

New strategy and alternative insecticides for larval control of the insecticide resistant dengue vector Aedes aegypti in Lao PDR

Sebastien Marcombe¹, Phoutmany Thammavong¹, Somsanith Chonephetsarath¹, Nothasin Phommavan¹, Kaithong Lakeomany¹, Phonesavanh Luangamath¹, Nampherng Xayavong¹, Somphat Nilaxay¹, Jeffrey Hertz², Ian W. Sutherland², and Paul T. Brey¹

1. Laboratory of Medical Entomology, Institut Pasteur du Laos, Vientiane, Laos. 2. United States Navy Medical Research Center-Asia, PSA SEMBAWANG, Singapore

Background

- **Dengue** is reemerging and endemic in Laos. Recent **outbreaks** occurred in 2010 (22,890 cases), 2013 (44,098) and 2017 (5,584).
- Aedes. aegypti and Ae. albopictus from Vientiane capital are resistant to Temephos (Abate[®]), the only larvicide used for vector control.
- Urgent need to provide public health authorities with new strategies and alternative insecticides.
- **Objectives:** Test the **efficacy of alternative larvicides** with different modes of action (insecticide resistance (IR) and residual efficacy).

- Assess the efficacy of the pyriproxyfen auto-dissemination technic in large scale field trial (ECOMORE2 project).

Alternative insecticides for Aedes larval control

Methods and Results.

- IR status of *Ae. aegypti* from Vientiane: temephos, *Bti*, diflubenzuron, pyriproxyfen and, spinosad (WHO protocol, **Table 1**).
- Residual efficacies of *Bti* and diflubenzuron formulations under simulated field conditions using 200L plastic containers (WHO protocol, **Fig.1**).

Larvicides	Class group	Mode of action	Strain	Number of larvae	LC50 (95% CI) (µg/L)	LC95 (95% CI) (µg/L)	RR50	RR95	X2	р	Slope (± se)	6	80	
Bti	bacterial larvicide	cell membrane destruction	USDA	1501	14 (12-21)	54 (31-199)	-		0.2	0.89	2.8 (0.6)	ion		
			IPL	1600	11.8 (11.3-12.3)	21 (19-23)	0.8	0.4	5.5	0.24	6.6 (0.5)	ibit	60	
diflubenzuron	benzoylureas	chitin biosynthesis inhibitor	USDA	1500	1.7 (1.5-1.8)	5.6 (4.6-7.2)	-	-	8.5	0.075	3.1 (0.3)	hh		
			IPL	804	1.8 (1.4-2.1)	4.1 (3.8-6.8)	1.1	0.7	20	0.0005	4.6 (0.3)	ce]	40	
pyriproxyfen	insect growth regulator	juvenil hormone mimics	USDA	1500	0.086 (0.05-0.1)	0.049 (0.03-0.06)	-	-	4.4	0.11	1.4 (0.3)	en		
			IPL	699	0.019 (0.017-0.022)	0.098 (0.074-0.12)	0.2	2	7.6	0.055	2.4 (0.2)	erg	20	
spinosad	spynosins	nicotinic acetylcholine receptors	USDA	1500	14 (12-19)	40 (26-96)	-	-	0.4	0.79	3.6 (0.3)	Gm	20	
			IPL	1472	69 (62-77)	206 (170-270)	4.9	5.2	3.4	0.18	3.4 (0.3)	Ĩ	0	
temephos	organophosphate	acetylcholinesterase inhibitor	USDA	1250	2.9 (2.7-3.1)	6.6 (5.8-7.6)	-	-	3.7	0.59	4.6 (0.3)		0	0.0.0
			IPL	2600	6.6 (6.2-6.9)	11.6 (10.5-13.5)	2.3	1.8	5.3	0.07	6.6 (0.5)			くりんちょ

- Bti and diflubenzuron formulations remained effective after 28 weeks (semi-field trial).

Fig 1. Emergence inhibition rates of *Ae. aegypti* (IPL strain) in

Insecticide resistance tests at IPL.

Semi-field trial settings

Innovative strategies for vector control in Laos: ECOMORE2

Methods and results. Entomology surveillance

- Dynamic of vectors (BG traps and Ovitraps weekly; Fig.2&3)
- Pyriproxyfen auto-dissemination strategy in urban areas (In2Care[®] traps)

ECOMORE 2 project

Conclusions

600

500

400

300

200

- Bti and diflubenzuron may be promising alternative larvicides for controlling temephos resistant vectors in water-storage containers in Laos.
- Pyriproxyfen auto-dissemination strategy is undergoing, and if effective, may represent a potential tool to be used in combination with the new larval control strategies in Laos.

October 01-03th, 2018 - Grand Copthorne Waterfront Hotel, Singapore

Don koy

Traps